Tankguard SF

Product description

This is a two component solvent free amine cured phenolic/novolac epoxy coating. It is a specially designed tank lining with very good chemical resistance. Can be used as primer, mid coat or finish coat in atmospheric and immersed environments. Suitable for properly prepared carbon steel, galvanised steel, stainless steel and concrete substrates.

Scope

The Application Guide offers product details and recommended practices for the use of the product.

The data and information provided are not definite requirements. They are guidelines to assist with efficient and safe use, and optimum service of the product. Adherence to the guidelines does not relieve the applicator of responsibility for ensuring that the work meets specification requirements.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

Referred standards

Reference is generally made to ISO Standards. When using standards from other regions it is recommended to reference only one corresponding standard for the substrate being treated.

Surface preparation

The required quality of surface preparation can vary depending on the area of use, expected durability and if applicable, project specification.

When preparing new surfaces, maintaining already coated surfaces or aged coatings it is necessary to remove all contamination that can interfere with coating adhesion, and prepare a sound substrate for the subsequent product. Inspect the surface for hydrocarbon and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area using fresh water. Paint solvents (thinner) shall not be used for general degreasing or preparation of the surface for painting due to the risk of spreading dissolved hydrocarbon contamination. Paint thinners can be used to treat small localized areas of contamination such as marks from marker pens. Use clean, white cotton cloths that are turned and replaced often. Do not bundle used solvent saturated cloths. Place used cloths into water. When the surface is an existing coating, verify with technical data sheet and application guide of the involved products, both over coatability and the given maximum over coating interval.

Process sequence

Surface preparation and coating should normally be commenced only after all welding, degreasing, removal of sharp edges, weld spatter and treatment of welds is complete. It is important that all hot work is completed before coating commences.

Soluble salts removal

Date of issue: 25 November 2020

This Application Guide supersedes those previously issued.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system. For your nearest local Jotun office, please visit our website at www.jotun.com.
Soluble salts have a negative impact on the coating systems performance, especially when immersed. Jotun’s general recommendations for maximum soluble salts (sampled and measured as per ISO 8502-6 and -9) content on a surface are:
- Chemical tanks: 50 mg/m²
- For areas exposed to (ISO 12944-2):
 - C1-C4: 200 mg/m²
 - C5: 100 mg/m²
 - Im1-Im3: 80 mg/m²

Carbon steel

Initial rust grade

The steel shall preferably be Rust Grade A or B (ISO 8501-1). It is technically possible to apply the coating to rust grades C and D, but it is practically challenging to ensure specified film thickness on such a rough surface, hence risk of reduced lifetime of the coating system. When steel of Rust Grade C or D is coated, the frequency of inspection and testing should be increased.

Metal finishing

For areas in corrosivity category C1 to C4 (ISO 12944-2) all irregularities, burrs, slivers, slag and spatter on welds, sharp edges and corners shall conform to minimum grade P2 (ISO 8501-3) Table 1, or as specified. All edges shall have a rounded radius of minimum 2 mm subjected to three pass grinding or equally effective method.

For areas in corrosivity category C5 and Im1-3 the requirement are for the steel to conform to grade P2 (ISO 8501-3) Table 1. All edges shall have a rounded radius of minimum 2 mm subjected to three pass grinding or equally effective method. One may use a mechanical grinder fitted with a suitable abrasive disc. All sharp irregularities, burrs, slivers, slag and spatter on welds, whether apparent before or after blast cleaning, shall be removed before coating application. Welding smoke is water soluble and it is most efficiently removed by water cleaning. Defective welds shall be replaced and treated to an acceptable finish before painting. Temporary welds and brackets shall be ground to a flat finish after removal from the parent metal.

Surface preparation and coating should normally be commenced only after all metal finishing and degreasing of a specific area is complete. It is important as much hot work as possible is completed before coating commences.

Pitting repair

Pittings in steel can be difficult to cover fully with most coatings. In some areas it is practically feasible to use filler to fill pittings. This should then be done either after the initial surface preparation or after application of first coat. For tank coating and lining used for chemical exposure the recommendation is to fill pits through welding, since using fillers may negatively affect the coating systems’ chemical resistance and flexibility.

Abrasive blast cleaning

Cleanliness

After pre-treatment is complete, the surface shall be dry abrasive blast cleaned to Sa 2½ (ISO 8501-1) using abrasive media suitable to achieve a sharp and angular surface profile.

Surface profile

Recommended surface profile 50-100 µm, grade Medium to Coarse G (ISO 8503-2). Measure the achieved profile with surface replication tape (Testex) to ISO 8503-5 or by a surface roughness stylus instrument (ISO 8503-4).

Abrasive media quality

The mineral abrasive may be of any material that meets the specified requirements. It shall be composed of clean, sound, hard particles free from foreign substances such as dirt, oil, grease, toxic substances, paint, organic matter and water soluble salts. (According to ISO 11125 and ISO 11126). The moisture content for material delivered shall not exceed 0.5% (by weight) and the conductivity when tested according to ISO 11127-7 shall not exceed 250 μS/cm.

Compressed air quality

This Application Guide supersedes those previously issued.
The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.
For your nearest local Jotun office, please visit our website at www.jotun.com.
The supply of clean air to blasting pots must be secured to avoid contamination of abrasive and thereby of blast cleaned surfaces. Compressors must be fitted with sufficient traps for oil and water. It is also recommended to fit two water separators at the blasting machine to ensure a supply of moisture-free air to the abrasive chamber.

Dust contamination

On completion of abrasive blasting, the prepared surface shall be vacuum cleaned to remove residues of corrosion products and abrasive media, and inspected for particulate contamination. Maximum dust quantity rating 1 (ISO 8502-3). Dust size no greater than class 2. Continue cleaning until testing shows the required result.

Hand and Power Tool Cleaning

Power tool cleaning

Minor damage of the coating may be prepared to St 3 (ISO 8501-1). Suitable method is disc grinding with rough discs only. Ensure the surface is free from mill scale, residual corrosion, failed coating and is suitable for painting. The surface should appear rough and mat.

Galvanised steel

Minor damage of the coating may be prepared to St 3 (ISO 8501-1). Suitable methods are disc grinding with rough disc, Bristle Blaster and Needle hammer. Ensure the surface is free from mill scale, residual corrosion, failed coating and is suitable for painting. The surface should appear rough and mat. Overlapping zones to intact coating shall have all leading edges feathered back by sanding methods to remove all sharp leading edges and establish a smooth transition from the exposed substrate to the surrounding coating. Consecutive layers of coating shall be feathered to expose each layer and new coating shall always overlap to an abraded existing layer. Abrade intact coatings around the damaged areas for a minimum 100 mm to ensure a mat, rough surface profile, suitable for over coating. Mechanical repairs are only accepted for minor areas of damage where abrasive blasting is expected to create more damage to the coating system than actual benefit to the performance of the coating system.

Abrasive blast cleaning

After removal of excess zinc and surface defects the area to be coated shall be degreased to ISO 12944-4, Part 6.2.4 Alkaline Cleaning. The galvanised surface shall be sweep blast-cleaned with the nozzle angle at 45-60° from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved non-metallic abrasive media. As a guide, a surface profile 25-55 μm, grade Fine G; Ry5 (ISO 8503-2) should be achieved. Care must be exercised when sweep blasting. The zinc coating thickness should be reduced as little as possible, preferably not more than 10 μm. Smaller areas can be lightly treated with abrasive paper. Finished surfaces shall be dull, profiled and show no areas of shiny metal.

After removal of excess zinc and surface defects the area to be coated shall be degreased with an alkaline detergent, washed by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard and the surface abraded using mechanical or hand sanding methods using non-metallic abrasives or bonded fibre abrasive pads to remove all polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders.

Hand and Power Tool Cleaning

After removal of excess zinc and surface defects the area to be coated shall be degreased with an alkaline detergent, washed by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard and the surface abraded using mechanical or hand sanding methods using non-metallic abrasives or bonded fibre abrasive pads to remove all polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders.

Water jetting

Inspect the surface for process residues, hydrocarbon contamination and corrosion by products. If present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water. Optimum performance is achieved with preparation to a grade corresponding to the description of Wa 2½. Minimum preparation grade is Wa 1.
Stainless steel

Abrasive blast cleaning

The surface to be coated shall be dry abrasive blast cleaned as required for the specified surface profile using non-metallic abrasive media which is suitable to achieve a sharp and angular surface profile. As a guide, a surface profile corresponding to 25-55 µm, grade Fine G; Ry5 (ISO 8503-2) should be achieved.

Examples of recommended abrasives are:
- Ferrite free almandite garnet grade 30/60 and 80 grade (US Mesh size)
- Aluminium oxide grade G24

Chlorinated or chlorine containing solvents or detergents must not be used on stainless steel.

Concrete

Concrete should be a minimum of 28 days old, applying any coating before this time will greatly increase the chance of the coating de-bonding. The moisture content of the concrete should be checked prior to the application of the coating and should not be greater than 5%. Concrete substrates should be mechanically prepared to leave a clean, sound and dry base on which a coating system can be applied.

Clean – Free of oils, grease, dust, dirt, chemicals, loose coating, curing compounds, form release oils, sealers or hardeners.

Sound – Concrete that has unsound areas (voids, hollow spots, and friable surface) may have to be removed, replaced or repaired with materials that are compatible with the selected coating system.

Dry – It is important to address dryness because most coatings require a dry surface for proper adhesion. Moisture contained within the concrete that moves towards the surface through the pores of the concrete may prevent adequate coating adhesion.

Dry abrasive blast cleaning to SSPC-SP 13/NACE No. 6. Where the concrete has become contaminated with oils, grease, or fuels, water emulsifiable degreasers-cleaners may be used to remove these contaminants. It is important to only clean an area that can be fully washed down after degreasing before any of the cleaner can dry on the surface.

Ultra high pressure water jetting can be used to remove laitance and reveal blowholes and imperfections. Ensure concrete is dry before coating application.

Blast cleaning

Dry abrasive blast cleaning to SSPC-SP 13/NACE No. 6. Where the concrete has become contaminated with oils, grease, or fuels, water emulsifiable degreasers-cleaners may be used to remove these contaminants. It is important to only clean an area that can be fully washed down after degreasing before any of the cleaner can dry on the surface. Where the contamination has penetrated deep in to the substrate it may be necessary to use Flame/Thermal cleaning.

Diamond disc grinding

Diamond grind the surface to remove all laitance and expose the aggregates.

Coated surfaces

Shop primers

Shop primers are accepted as temporary protection of steel plates and profiles. However the shopprimer should be completely removed through blast cleaning to minimum Sa 2½ (ISO 8501-1) using abrasive media suitable to achieve a sharp and angular surface profile 50-100 µm, grade Medium to Course G; Ry5 (ISO 8503-2).
Application

Acceptable environmental conditions - before and during application

Before application, test the atmospheric conditions in the vicinity of the substrate for the dew formation according to ISO 8502-4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature</td>
<td>10 - 60 °C</td>
</tr>
<tr>
<td>Substrate temperature</td>
<td>10 - 50 °C</td>
</tr>
<tr>
<td>Relative Humidity (RH)</td>
<td>10 - 60 %</td>
</tr>
</tbody>
</table>

The following restrictions must be observed:

- Only apply the coating when the substrate temperature is at least 3 °C (5 °F) above the dew point
- Do not apply the coating if the substrate is wet or likely to become wet

Product mixing

Product mixing ratio (by volume)

<table>
<thead>
<tr>
<th>Component</th>
<th>Ratio (by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tankguard SF Comp A</td>
<td>2 parts</td>
</tr>
<tr>
<td>Tankguard SF Comp B</td>
<td>1 part</td>
</tr>
</tbody>
</table>

Induction time and Pot life

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction time</td>
<td>10 min</td>
</tr>
<tr>
<td>Pot life</td>
<td>1 h</td>
</tr>
</tbody>
</table>

The temperature of base and curing agent is recommended to be 18 °C or higher when the product is mixed.

Thinner/Cleaning solvent

Do not add thinner.

Cleaning solvent: Jotun Thinner No. 17

Application data

Spray application

Airless Spray Equipment

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump ratio (minimum)</td>
<td>64:1</td>
</tr>
<tr>
<td>Pressure at nozzle (minimum)</td>
<td>175 bar/2500 psi</td>
</tr>
<tr>
<td>Nozzle tip (inch/1000)</td>
<td>19-25</td>
</tr>
<tr>
<td>Nozzle output (litres/minute)</td>
<td>1.5-2.6</td>
</tr>
<tr>
<td>Filters (mesh)</td>
<td>50-70</td>
</tr>
</tbody>
</table>
Several factors influence, and need to be observed to maintain the recommended pressure at the nozzle. Among factors causing pressure drop are:
- extended hoses or hose bundles
- extended hose whip-end line
- small internal diameter hoses
- high paint viscosity
- large spray nozzle size
- inadequate air capacity from compressor
- incorrect or clogged filters

Plural component (Twin Pump) airless spray equipment

Using two-component pump is highly recommended in order to achieve an optimum spray pattern, especially during application at lower temperatures. When applying at higher temperatures use of two-component pump eliminates the challenge with reduced pot life.

When using plural spray equipment, Jotun recommends the use of either a pump with computerised pump ratio settings or fixed ratio settings in combination with a flow meter for each pump to monitor the proper delivery ratio of the coating components is maintained during use.

Recommended data for pump output, pressure at nozzle, nozzle tip and filters are the same as for airless spray equipment.

Other application tools

Brush application

Suitable for application by brush. Recommended for first coat or stripe coating application in corners, on edges and other areas difficult to reach. A stiff brush is recommended. It will be necessary to apply additional coats to achieve a similar dry film thickness as when the coating is applied by airless spray.

Roller application

Roller application is only permitted in scallops and rat holes where even a brush would not be suitable.

Film thickness per coat

Typical recommended specification range

<table>
<thead>
<tr>
<th>Film thickness</th>
<th>Typical range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry film thickness</td>
<td>150 - 500 µm</td>
</tr>
<tr>
<td>Wet film thickness</td>
<td>150 - 500 µm</td>
</tr>
<tr>
<td>Theoretical spreading rate</td>
<td>6.7 - 2 m²/l</td>
</tr>
</tbody>
</table>

This product can be applied up to 50 % higher than maximum specified film thickness without loss of technical properties.

Film thickness measurement

Wet film thickness (WFT) measurement and calculation

To ensure correct film thickness, it is recommended to measure the wet film thickness continuously during application using a painter's wet film comb (ISO 2808 Method 1A). The measurements should be done as soon as possible after application.

Fast drying paints may give incorrect (too low) readings resulting in excessive dry film thickness. For multi layer physically drying (resoluble) coating systems the wet film thickness comb may give too high readings resulting in too low dry film thickness of the intermediate and top coats.

Use a wet-to-dry film calculation table (available on the Jotun Web site) to calculate the required wet film thickness per coat.
Dry film thickness (DFT) measurement

When the coating has cured to hard dry state the dry film thickness can be checked to SSPC PA 2 or equivalent standard using statistical sampling to verify the actual dry film thickness. Measurement and control of the WFT and DFT on welds is done by measuring adjacent to and no further than 15 mm from the weld.

Application / Drying / Curing considerations

Pay close attention to both spraying technique and the correct setting of equipment during application in order to achieve an even, pinhole free film. A combination of the correct inbound air / outbound material pressure, correct airless tip or spray set up and a 30-50 cm gun to substrate distance is recommended. Apply the coating in even and uniform parallel passes and overlap each pass 50% to achieve an even film. Use a painter’s wet film comb during application to control the wet to dry film thickness of the coating.

Ventilation

As a guideline for good ventilation, after application of each coat the confined space should be ventilated corresponding to minimum 3 exchanges of air per hour. After final coat maintain minimum 3 exchanges of air per hour for at least 48 hours. Thereafter the number of air exchanges can be reduced to 1 per hour until the coating is dried/cured for service.

For more detailed information reference is made to Jotun’s General Tank Coating Code of Practice.

Stripe coating

The stripe coat sequence can be either of the following:

1. Surface preparation, full coat, stripe coat. This sequence can be used when a large substrate area has been prepared and leaving the substrate exposed for a long time while doing stripe coating could lead to surface deterioration.
2. Surface preparation, stripe coat, full coat.

In general Jotun recommends alternative 1 because it reduces the risk that “new” contamination will be introduced to the uncoated substrate.

Walking on the blast cleaned substrate in order to do the stripe coating presents a risk for such contamination. It is important to pay special attention to edges, openings, rear sides of stiffeners, scallops etc. and to apply a stripe coat to these areas where the spray fan may not reach or deposit an even film. When applying a stripe coat to bare metal use only a stiff, round stripe coating brush to ensure surface wetting and filling of pits in the surface.

Stripe coating shall be of a different colour to the main primer coat and the topcoat colour and should be applied in an even film thickness, avoiding excessive brush marks in order to avoid entrapped air. Care should be taken to avoid excessive film thickness. Pay additional attention to pot life during application of stripe coats. Jotun recommends a minimum of one stripe coat. A second stripe coat will be beneficial in order to ensure that sufficient paint material is applied to the critical parts of the object.

Pit filling

The below procedure can be followed for application on tank bottom with a one coat system of solvent free epoxy (SF) where pitting is observed:

Upon acceptance of blasting grade Sa 2½ (ISO 8501-1), areas to be painted, including pittings, are to be vacuum cleaned, dry, free from any contamination, cargo residues, oil or other debris.

1. One full coat of Tankguard Holding Primer to be spray applied on the entire tank bottom, including pittings (Alternatively dehumidification of the tank, below 40% RH)
2. Sufficient time must be allowed for curing/over-coating as per Technical Data Sheet prior to application of stripe coat or subsequent coats (where necessary)
3. Carry out of stripe coating with Tankguard SF by brush (multiple coats might be necessary) in order to build up to specified dry film thickness
4. Identify all deep pittings to be filled with the SF coating. Please note that all local regulations must be adhered to
5. Pittings to be filled must be clean, dry and free from any contamination, oil or debris
6. Pour the SF coating into the pits up to the flat substrate surface
7. Level the wet coating by using a squeegee or flat stainless steel scraper to reduce the remaining paint material on the none pitted areas

8. Apply full coat as per specification as soon as filling is completed (wet-on-wet)

9. Upon completion of the coating system together with the stripe coating and pit filling, the dry film thickness has to be checked, and in areas found with low dry film thickness, an extra coat has to be applied

Coating loss

The consumption of paint should be controlled carefully, with thorough planning and a practical approach to reducing loss. Application of liquid coatings will result in some material loss. Understanding the ways that coating can be lost during the application process, and making appropriate changes, can help reducing material loss.

Some of the factors that can influence the loss of coating material are:
- type of spray gun/unit used
- air pressure used for airless pump or for atomization
- orifice size of the spray tip or nozzle
- fan width of the spray tip or nozzle
- the amount of thinner added
- the distance between spray gun and substrate
- the profile or surface roughness of the substrate. Higher profiles will lead to a higher "dead volume"
- the shape of the substrate target
- environmental conditions such as wind and air temperature

Drying and Curing time

<table>
<thead>
<tr>
<th>Substrate temperature</th>
<th>10 °C</th>
<th>15 °C</th>
<th>23 °C</th>
<th>30 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface (touch) dry</td>
<td>15 h</td>
<td>12 h</td>
<td>6 h</td>
<td>5 h</td>
<td>1.5 h</td>
</tr>
<tr>
<td>Walk-on-dry</td>
<td>30 h</td>
<td>24 h</td>
<td>12 h</td>
<td>9 h</td>
<td>4 h</td>
</tr>
<tr>
<td>Dry to over coat, minimum</td>
<td>30 h</td>
<td>24 h</td>
<td>12 h</td>
<td>7 h</td>
<td>4 h</td>
</tr>
<tr>
<td>Dried/cured for service</td>
<td>15 d</td>
<td>10 d</td>
<td>3 d</td>
<td>2 d</td>
<td>1 d</td>
</tr>
</tbody>
</table>

Drying and curing times are determined under controlled temperatures and relative humidity below 60 %, and at average of the DFT range for the product. For all temperatures the maximum acceptable Relative Humidity is 60 %.

For wet-on-wet application 2 x 200 μm is recommended. The time recommended before application of subsequent coat is between 20 minutes and 4 hours. As long as this is done wet-on-wet, the relative humidity can be accepted higher than 60 % (maximum 85 %), but there may be a risk of visual effect (white/dull areas) in the surface of the last coat.

For storage of crude oil and clean petroleum products the tanks can be returned to service 48 hours after application of the final coat, when applied at temperatures 23 °C and above.

For a list of what constitutes clean petroleum products please refer to Jotun Product Resistance Guide.

For other less aggressive chemicals early immersion time can be possible. For further advice please contact your local Jotun office.

Surface (touch) dry: The state of drying when slight pressure with a finger does not leave an imprint or reveal tackiness.

Walk-on-dry: Minimum time before the coating can tolerate normal foot traffic without permanent marks, imprints or other physical damage.

Dry to over coat, minimum: The recommended shortest time before the next coat can be applied.

Dried/cured for service: Minimum time before the coating can be permanently exposed to the intended environment/medium.
Maximum over coating intervals

Maximum time before thorough surface preparation is required. The surface must be clean and dry and suitable for over coating. Inspect the surface for chalking and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by low-pressure water cleaning using fresh water.

If maximum over coating interval is exceeded the surface should in addition be carefully roughened to ensure good intercoat adhesion.

Areas for atmospheric exposure

<table>
<thead>
<tr>
<th>Average temperature during drying/curing</th>
<th>10 °C</th>
<th>15 °C</th>
<th>23 °C</th>
<th>30 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itself</td>
<td>1 mth</td>
<td>14 d</td>
<td>5 d</td>
<td>4 d</td>
<td>4 d</td>
</tr>
</tbody>
</table>

Areas for immersed exposure

<table>
<thead>
<tr>
<th>Average temperature during drying/curing</th>
<th>10 °C</th>
<th>15 °C</th>
<th>23 °C</th>
<th>30 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itself</td>
<td>1 mth</td>
<td>14 d</td>
<td>5 d</td>
<td>4 d</td>
<td>4 d</td>
</tr>
</tbody>
</table>

Other conditions that can affect drying / curing / over coating

Repair of coating system

Damages to the coating layers:
Prepare the area through sandpapering or grinding, followed by thorough cleaning/vacuuming. When the surface is clean and dry the coating may be over coated by itself or by another product, ref. original specification.
Always observe the maximum over coating intervals. If the maximum over coating interval is exceeded the surface should be carefully roughened in order to ensure good intercoat adhesion.

Damages exposing bare substrate:
Remove all rust, loose paint, grease or other contaminants by spot blasting, mechanical grinding, water and/or solvent washing. Feather edges and roughen the overlap zone of surrounding intact coating. Apply the coating system specified for repair.

Repair of damaged areas

Sags and runs can be caused by too high wet film thickness, too much thinner added or the spray gun used too close to the surface.
Repair by using a paint brush to smooth the film when still wet.
Sand down to a rough, even surface and re-coat if the coating is cured.
Orange peel can be caused by poor flow/levelling properties of the paint, poor atomization of the paint, thinner evaporating too fast or the spray gun held too close to the surface.
This can be rectified by abrading the surface and applying an additional coat after having adjusted the application properties or the application technique.
Dry spray can be caused by poor atomization of the paint, spray gun held too far from the surface, high air temperature, thinner evaporating too fast or coating applied in windy conditions.
Sand down to a rough even surface and re-coat.
Pinholes can be caused by entrapped solvents in the film or by incorrect application technique. Pinholes can be repaired as per procedure for damages to the coating layer or to the substrate, ref. above.

Coating film continuity

Date of issue: 25 November 2020
Page: 9/11

This Application Guide supersedes those previously issued.
The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.
For your nearest local Jotun office, please visit our website at www.jotun.com.
Jotun recommends that all coating systems for immersion shall be inspected for film continuity/defects by visual observation of pin hole rusting through the coating after tank hydro-testing or sea water immersion during sea trials. Alternatively, full immersion of tanks in combination with tanks fully saturated by tank cleaning machine(s), soaking all surfaces with sea water and creating a high condensation environment during sea trials. All noted defects shall be repaired or reported as outstanding issues.

For onshore storage tanks or for tanks where sea water immersion may not be permitted or practical, coating shall be tested for film continuity/defects as described in ASTM D 5162, method A or B as appropriate for the coating thickness.

The recommended voltage is 500 volts per 100 μm DFT. This can be done when it is Dried/cured for service or after 24 hours at 23 °C. The acceptance criterion is no defects. Defects found shall be repaired as per coating specification.

Quality assurance

The following information is the minimum required. The specification may have additional requirements.

- Confirm that all welding and other metal work has been completed before commencing pre-treatment and surface preparation
- Confirm that installed ventilation is balanced and has the capacity to deliver and maintain the RAQ
- Confirm that the required surface preparation standard has been achieved and is held prior to coating application
- Confirm that the climatic conditions are within recommendations in the AG, and are held during the application
- Confirm that the required number of stripe coats have been applied
- Confirm that each coat meets the DFT requirements in the specification
- Confirm that the coating has not been adversely affected by rain or other factors during curing
- Observe that adequate coverage has been achieved on corners, crevices, edges and surfaces where the spray gun cannot be positioned so that its spray impinges on the surface at 90° angle
- Observe that the coating is free from defects, discontinuities, insects, abrasive media and other contamination
- Observe that the coating is free from misses, sags, runs, wrinkles, fat edges, mud cracking, blistering, obvious pinholes, excessive dry spray, heavy brush marks and excessive film build
- Observe that the uniformity and colour are satisfactory

All noted defects shall be fully repaired to conform to the coating specification.

Caution

This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to Jotun's technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. Any suggested deviation to suit the site conditions shall be forwarded to the responsible Jotun representative for approval before commencing the work. For further advice please contact your local Jotun office.

Health and safety

Please observe the precautionary notices displayed on the container. Use under well ventilated conditions. Do not inhale spray mist. Avoid skin contact. Spillage on the skin should immediately be removed with suitable cleanser, soap and water. Eyes should be well flushed with water and medical attention sought immediately.

Accuracy of information

Always refer to and use the current (last issued) version of the TDS, SDS and if available, the AG for this product. Always refer to and use the current (last issued) version of all International and Local Authority Standards referred to in the TDS, AG & SDS for this product.

Colour variation

Some coatings used as the final coat may fade and chalk in time when exposed to sunlight and weathering effects. Coatings designed for high temperature service can undergo colour changes without affecting performance. Some slight colour variation can occur from batch to batch. When long term colour and gloss retention is required, please seek advice from your local Jotun office for assistance in selection of the most suitable top coat for the exposure conditions and durability requirements.
Reference to related documents

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

When applicable, refer to the separate application procedure for Jotun products that are approved to classification societies such as PSPC, IMO etc.

Symbols and abbreviations

- **min** = minutes
- **h** = hours
- **d** = days
- **°C** = degree Celsius
- **°** = unit of angle
- **µm** = microns = micrometres
- **g/l** = grams per litre
- **g/kg** = grams per kilogram
- **m²/l** = square metres per litre
- **mg/m²** = milligrams per square metre
- **psi** = unit of pressure, pounds/inch²
- **Bar** = unit of pressure
- **RH** = Relative humidity (% RH)
- **UV** = Ultraviolet
- **DFT** = dry film thickness
- **WFT** = wet film thickness
- **TDS** = Technical Data Sheet
- **AG** = Application Guide
- **DSG** = Safety Data Sheet
- **VOC** = Volatile Organic Compound
- **MCI** = Jotun Multi Colour Industry (tinted colour)
- **RAQ** = Required air quantity
- **PPE** = Personal Protective Equipment
- **EU** = European Union
- **UK** = United Kingdom
- **EPA** = Environmental Protection Agency
- **ISO** = International Standards Organisation
- **AS/NZS** = Australian/New Zealand Standards
- **NACE** = National Association of Corrosion Engineers
- **SSPC** = The Society for Protective Coatings
- **PSPC** = Performance Standard for Protective Coatings
- **IMO** = International Maritime Organization
- **ASFP** = Association for Specialist Fire Protection
- **ASTM** = American Society of Testing and Materials
- **MCI** = Jotun Multi Colour Industry (tinted colour)
- **RAQ** = Required air quantity
- **ISO** = International Standards Organisation
- **AS/NZS** = Australian/New Zealand Standards
- **NACE** = National Association of Corrosion Engineers
- **SSPC** = The Society for Protective Coatings
- **PSPC** = Performance Standard for Protective Coatings
- **IMO** = International Maritime Organization
- **ASFP** = Association for Specialist Fire Protection

Disclaimer

The information in this document is given to the best of Jotun’s knowledge, based on laboratory testing and practical experience. Jotun’s products are considered as semi-finished goods and as such, products are often used under conditions beyond Jotun's control. Jotun cannot guarantee anything but the quality of the product itself. Minor product variations may be implemented in order to comply with local requirements. Jotun reserves the right to change the given data without further notice.

Users should always consult Jotun for specific guidance on the general suitability of this product for their needs and specific application practices.

If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail.